
AMReX on GPUs -- Overview

• Written in a mix of C++14/Fortran (plus an option for using Fortran interfaces)

• Supports parallelism through MPI+X (with UPC++ option)

• Mesh, particle and particle/mesh algorithms

• Solution of parabolic and elliptic systems using geometric multigrid solvers

• Embedded boundary (cut-cell) representation of geometry

AMReX GPU Porting Goals
There are two aspects of “GPU-izing AMReX”:

• GPU-ize the core functionality of AMReX (which the application code never needs
to modify or even see)

• Make it as easy for the application teams as possible to manage memory and call
kernels -- without limiting potential performance.

Initial approach was to focus on NVIDIA GPUs, aka to explicitly use CUDA for
performance.

This strategy is allowing us to relatively easily extend to AMD GPUs.

GPU Porting Strategy Overview

AMReX Porting Topics:
 Fortran to C++
 Finer-Grained Parallelism
 Lambda-based GPU launches
 CUDA streams implementation
 Memory management strategies
 Asynchronous Temporaries
 Particle methods

Laser Driven Plasma Accelerator Test using WarpX on 1 node of Summitdev.
Currently achieving 3.5x speed-up on 1 Volta V100 vs. 1 KNL node.

Converting AMReX work to C++

AMReX kernels have been converted from Fortran to C++.
Applications can still use Fortran (and CUDA Fortran), but AMReX’s floating
point operations are entirely in C++.

• Better Maintainability
– Fortran requires separate Host & Device versions of all functions.

• Ensure future portability
– Industry trend: C++ is given attention first.

• Remove dependency on CUDA Fortran.
– Less dependencies create a more stable platform.

Conversion Example

Array4<Real> const& fab = mf.array(mfi);
for (int k = lo.z; k <= hi.z; ++k) {

for (int j = lo.y; j <= hi.y; ++j) {
for (int i = lo.x; i <= hi.x; ++i) {

fab(i,j,k) += 1.; }}}

Array4<Real> holds:

• Pointer to the data of type Real
• Size of the object in 3D
• Striding information

and is fully accessible on the GPU.

do k = lo(3), hi(3)
do j = lo(2), hi(2)

do i = lo(1), hi(1)+1
fluxx(i,j,k) += 1.0

end do
end do

end do

Testing:

C++ Faster: 18 (Common Functions)
Fortran Faster: 10 (Compiler Specific)
Similar Timings: 179

Fortran C++

Memory Management

NVIDIA Unified Viritual Memory is used for FAB data:
• Easy partial piece-wise porting and development.
• Minimal overhead if data is moved to device and kept there.
• Not strictly required. Preparation for future architechtures.

Allocation performed through structured AMReX Arenas.
• Allow switching of memory types (Host, Device, Managed, Pinned, etc).
• Numerous memory pool strategies available:

– (Buddy-memory, Slab, custom AMReX allocate-on-the-fly).

Isolate metadata thoroughout AMReX data structures to reduce data movement.

CPU Parallelism Strategy
“MPI over grids, OpenMP over logical tiles”

Done using MultiFAB iterators called MFIter:
• Handles proper looping over local grids.
• Stores relationship of grids across MPI ranks.
• Coordinates tiling.

Typical usage is for OpenMP to loop over all the tiles (potentially
from multiple FABs) on a single MPI rank. Also includes:
• Static vs. dynamic scheduling
• Synchronous vs. asynchronous

(overlapping communication and computation)

GPU Parallelism is more fine-grained

CPU thread
distribution strategy
using tiling with
OpenMP.

GPU thread
distribution
strategy using
CUDA threads.

• OpenMP threads
were on the order of
tiles across local
boxes (~10-100).

• GPU threads are on
the order of local
number of cells
(~thousands).

• GPU Parallelization
strategy is shifted to
a finer-grained
implementation over
cells.

Portablility using Lambdas and Streams
• Allows compile time selection of CPU or GPU.
• MFIter increments across CUDA streams to maximize parallelism for any tiling.

AMReX launch variations:
amrex::launch – Launch work over a given Box or number of elements.
amrex::ParallelFor – Tightly nested 1D, 3D or 4D loops.
Fused launches – Sets of differently sized work combined into a single launch.

amrex::ParallelFor(box,
[=] AMREX_GPU_DEVICE (int i, int j, int k)
{

fab(i,j,k) += 1.;
});

Example CPU Parallelism
phi_old.FillBoundary(geom.periodicity());
pragma omp parallel
const Real* dx = geom.CellSize();
const Box& domain_bx = geom.Domain();
for (MFIter mfi(phi_old); mfi.isValid(); ++mfi)
{

const Box& bx = mfi.validbox();
compute_flux(BL_TO_FORTRAN_BOX(bx),

BL_TO_FORTRAN_BOX(domain_bx),
BL_TO_FORTRAN_ANYD(phi_old[mfi]),
BL_TO_FORTRAN_ANYD(flux[0][mfi])
BL_TO_FORTRAN_ANYD(flux[1][mfi]),

#if (AMREX_SPACEDIM == 3)
BL_TO_FORTRAN_ANYD(flux[2][mfi]),

#endif
dx);

}
pragma omp parallel end

Standard MPI Work:
Fill Boundary, Redistribute, etc.

Loop over Boxes with local data.
OpenMP details hidden inside.

Get Box to work over.

Call Fortran function that
does work on Box data.

GPU Parallelism Strategy
phi_old.FillBoundary(geom.periodicity());
const Real* dx = geom.CellSize();
const Box& domain_bx = geom.Domain();
for (MFIter mfi(phi_old); mfi.isValid(); ++mfi)
{

const Box& xbx = mfi.nodaltilebox(0);
Array4<Real> const& fluxx = flux[0].array(mfi);
Array4<Real> const& phi = phi_old.array(mfi);

amrex::ParallelFor(xbx,
[=] AMREX_GPU_DEVICE (int i, int j, int k)
{

compute_flux_x(i,j,k,fluxx,phi,dxinv);
});}

// Additional launch for Y and Z fluxes.
}

Standard MPI Work:
Launches used to implement.

Loop over Boxes with local data.
CUDA streams incremented within.

Get Box and pointers to
MultiFab data to work over.

Launch lambda function to
perform over desired Box.

Device sync during MFIter
destructor to guarantee
data consistency.

Asynchronous Temporaries
Temporaries that use CUDA callbacks in the destructors to allow MFIter loops to
remain asynchronous.
• Implemented in FAB, Vector and Scalar data structures.
• Contain pointers to the host and device versions for consistent memory.

if (d_data != nullptr) {
T** p = static_cast<T**>(std::malloc(2*sizeof(T*)));
p[0] = d_data;
p[1] = h_data;
AMREX_GPU_SAFE_CALL(cudaStreamAddCallback(Device::cudaStream(),

amrex_asyncarray_delete, p, 0));
}

~AsyncArray():

Particle Specific Methods

Uses CUDA’s Thrust library to perform
particle and particle/mesh work on the GPU:

• Vector-like containers using
specialized allocators to implement on
CUDA memory spaces.

• Also compatible with Thrust vectors.
• Implements Thrust functions for

sorting, searching, and partitioning.
• Redistributes particles entirely on the

GPU to minimize data movement.
Laser Driven Plasma Accelerator Test using WarpX on 1 node of Summitdev.
Currently achieving 3.5x speed-up on 1 Volta V100 vs. 1 KNL node.

Next Steps for Portability
Asynchronous I/O

• Write with CPU, calculate with GPU.
• Template for future asynchronous

work strategies.

CudaGraphs

Testing useful implementation patterns for AMReX
kernels, such as communication
• Especially useful for e.g., ghost cell filling

Current “Full” Application Results

For comparison: Sod shock-tube tutorial
with AMR has a 30x speed up.

Chart1

WarpX	1 Summit V100 / 1 KNL Node	1 Summit Node with GPUs / 1 Summit Node without GPUs	350	1100	MFIX Mini-App	1 Summit V100 / 1 KNL Node	1 Summit Node with GPUs / 1 Summit Node without GPUs	700	900	CASTRO	1 Summit V100 / 1 KNL Node	1 Summit Node with GPUs / 1 Summit Node without GPUs	500	500	Speed Up (%)

Sheet1

				WarpX		MFIX Mini-App		CASTRO

		1 Summit V100 / 1 KNL Node		350		700		500																																Cases at Least 20% faster						Cases with Similar Timings

		1 Summit Node with GPUs / 1 Summit Node without GPUs		1100		900		500																																C++		Fortran

																																								18		10				179

WarpX	1 Summit V100 / 1 KNL Node	1 Summit Node with GPUs / 1 Summit Node without GPUs	350	1100	MFIX Mini-App	1 Summit V100 / 1 KNL Node	1 Summit Node with GPUs / 1 Summit Node without GPUs	700	900	CASTRO	1 Summit V100 / 1 KNL Node	1 Summit Node with GPUs / 1 Summit Node without GPUs	500	500	Speed Up (%)

From NVIDIA AMD GPUs
• For AMD GPUs, AMReX will use HIP as the backend without changing the application

interface.

• HIP is very similar to CUDA in terms of the capabilities that AMReX uses. Most of the
GPU kernels in AMReX require no changes at all, and we expect this to be true for
application codes.

• For data iterators, multiple streams are used. AMReX provides portable macros and
functions for kernel launch. The implementation of the kernel launch uses C++ templates
and lambda functions, since both HIP and CUDA are C++ dialects.

• AMReX will continue using the Thrust library because it has been ported to HIP by AMD.

From NVIDIA AMD GPUs

• The HIP backend in AMReX is currently under development on NVIDIA GPUs. HIP code
can run on NVIDIA GPUs with CUDA and NVCC as its backend. This allows us to mix
HIP and CUDA during development. Once the HIP port is complete, the development will
be moved onto AMD GPUs.

• Currently HIP does not support managed memory, which is a feature AMReX uses to
allow application codes a smooth transition to GPU. Because of its current limitation, we
will provide functions to help manage the data migration between host and device

	AMReX on GPUs -- Overview
	AMReX GPU Porting Goals
	GPU Porting Strategy Overview
	Converting AMReX work to C++
	Conversion Example
	Memory Management
	CPU Parallelism Strategy
	GPU Parallelism is more fine-grained
	Portablility using Lambdas and Streams
	Example CPU Parallelism
	GPU Parallelism Strategy
	Asynchronous Temporaries
	Particle Specific Methods
	Next Steps for Portability
	Current “Full” Application Results
	From NVIDIA AMD GPUs
	From NVIDIA AMD GPUs

